ON THE MECHANISM OF MUSCARINIC HYDROLYSIS OF CHOLINE PHOSPHOLIPIDS IN THE HEART*

RUTH LINDMAR, KONRAD LÖFFELHOLZ† and JOACHIM SANDMANN Department of Pharmacology, University of Mainz, 6500 Mainz, Federal Republic of Germany

(Received 28 March 1988; accepted 5 July 1988)

Abstract—In the heart, choline phospholipids were by far the largest fraction (about 50%) of phospholipids, much larger than that of inositol phospholipids (less than 6%) and phosphatidic acid (0.3%). The choline phospholipids ($11 \,\mu$ mol/g) maintained a constant efflux of choline of about 1.5 nmol g⁻¹ min⁻¹ into the perfusate. Carbachol ($10 \,\mu$ M) rapidly enhanced the choline efflux by a muscarinic mechanism, that was independent of mepacrine, an inhibitor of phospholipase A_2 , as well as of extracellular Ca^{2+} ; the maximum acceleration was reached within 2 min. In contrast, the accumulation of inositol phosphates by carbachol was blocked in the presence of a Ca^{2+} -free perfusion medium. Similar to the carbachol-evoked choline efflux, the increase in tissue content of phosphatidic acid by carbachol was unaffected by infusion of a Ca^{2+} -free, EGTA-containing solution. Sodium oleate ($20 \,\mu$ M), an activator of phospholipase D, imitated the effects of carbachol on choline and phosphatidic acid, whereas NaF (5 mM), which has been reported to inhibit phospholipase D, blocked carbachol-evoked efflux of choline.

In conclusion, muscarinic receptor stimulation enhanced the hydrolysis of choline phospholipids presumably via activation of phospholipase D. The immediate formation of choline, phosphatidic acid and presumably diacylglycerol is discussed including its possible physiological importance.

Research on receptor-regulated hydrolysis of membrane phospholipids has been focused on the cleavage of the relatively small fraction of inositol compounds releasing inositol trisphosphate and diacylglycerol [1, 2]. In contrast, the few articles suggesting regulatory mechanisms also for choline phospholipids as the largest fraction of membrane phospholipids gained little attention. Receptor-regulated hydrolysis of these phospholipids was indicated by measuring the release of choline in response to muscarinic agonists [3–5], β -adrenoceptor agonists [6] and phorbol esters [7, 8].

Recently, we proposed that the mobilization of choline and the increase in tissue phosphatidic acid evoked by stimulation of muscarinic receptors in heart and brain was presumably mediated by activation of phospholipase D [5, 9]. Likewise, in hepatocytes, the increase in phosphatidic acid caused by various Ca²⁺-mobilizing agents has been linked to phospholipase D activity [10].

The present experiments confirm the muscarinic hydrolysis of choline phospholipids and again suggest a role of phospholipase D.

MATERIALS AND METHODS

Hearts isolated from chickens were perfused at 36° as described by Langendorff with Tyrode solution (Na⁺, 149.3; K⁺, 2.7; Ca²⁺, 1.8; Mg²⁺, 1.05; Cl⁻, 145.5; HCO₃, 11.9; H₂PO₄, 0.4; (+)-glucose,

* This work was supported by a grant from the Deutsche Forschungsgemeinschaft.

5.6 mM). The flow rate was adjusted to about 4 ml min⁻¹ g⁻¹ wet weight and the solutions were gassed with a mixture of 95% O_2 and 5% CO_2 . Drugs were infused after 30 or 40 min of perfusion as indicated in Results. Oleic acid as sodium salt (100 μ M) was added to a modified Tyrode solution (0.225 mM Ca^{2+}). This solution, being opaque (due to precipitation of oleic acid–calcium salt), was then filtered through a glass filter with a pore size of 10–16 μ m. The clear filtrate contained 20 μ M oleic acid (determined by gas chromatography) and 0.18 mM Ca^{2+} (determined by absorption spectrometry); the other constituents of the Tyrode solution were unchanged.

Choline was determined by a chemoluminescence assay [11], which is based on the conversion of choline to betaine and hydrogen peroxide catalyzed by choline oxidase (sensitivity: 1.5 pmol choline in $10 \, \mu$ l perfusate, which was used for the assay without extraction). In samples containing drugs that interfered with the assay (mepacrine, EGTA), choline was determined by a radioenzymatic assay [12]. In selected samples the compatibility of the two methods was tested.

The composition of phospholipids in the heart tissue was determined [13–15]. Heart homogenates (an aliquot with an internal standard added) (chloroform:methanol = 2:1) were centrifuged. The addition of 0.1 M KCl (1:4) to the clear homogenate yielded a two-phase system. After centrifugation, the lipid phase was dried with N_2 .

An aliquot of the lipid phase was spotted onto a silica gel 60 TLC glass plate (Merck, Darmstadt, F.R.G.) and the phospholipids were separated by two-dimensional TLC [14]. Plates were developed in chloroform: methanol: ammonia (25%) (65:35:5) and subsequently in chloroform: methanol: acet-

[†] Address correspondence to: Konrad Löffelholz, Department of Pharmacology, University of Mainz, Obere Zahlbacher Str. 67, D-6500 Mainz, F.R.G.

one: acetic acid: water (100:20:40:20:5). Lipids were visualized by iodine staining and identified by co-chromatography with reference substances. Individual phospholipid spots were scraped off and heated in perchloric acid for two hours. Phospholipids were then quantified by determination of phosphorus [16].

Determination of inositol phosphates was carried out as described previously [15, 17]. Hearts weighing about 1.0 g were perfused with Tyrode solution for 10 min and then for 4 hr with Tyrode solution containing [$myo^{-3}H$]-inositol (30 μ Ci/30 ml; specific activity 12.8 Ci/mmol) in a recirculation system. In some cases Ca2+ was omitted from the perfusion medium for the last 40 min of the loading period. Thereafter the hearts were perfused in a non-recirculation system for 40 min with normal or Ca²⁺-free Tyrode solution containing 10 mM LiCl. Carbachol (10 and 300 μ M), when added, was infused throughout the washout period. Gross inspection did not indicate that rate and force of contraction were impaired by the length of the experiments. Hearts were then homogenized in a glass-glass homogenizer in 12 ml chloroform: methanol (1:2). For the estimation of myo-inositol phosphates chloroform and water were added to 9 ml of the homogenate to obtain a two-phase system. After centrifugation at 3000 g and 4° for 20 min the aqueous (upper) phase was transferred to a column containing 1 g of anion exchange resin (Bio Rad AG 1-X8, 100 - 200 mesh, formate form). The phosphate esters were then eluted by the stepwise addition of solutions containing increasing concentrations of formate as described previously [17]. The 1.0-ml fractions eluted from the columns were counted for radioactivity using a liquid scintillation counter.

The incorporation of [myo-³H]-inositol into lipids was investigated using 3 ml of homogenate. Addition of 1 ml chloroform and 1.8 ml 2 M KCl yielded a two-phase system (chloroform:methanol:2 M KCl = 10:10:9). Samples were centrifuged at 3000 g and 4° for 20 min. The aqueous (upper) phase and the lipid phase were transferred to separate tubes; the tissue pellet was discarded. The upper phase was washed with approximately 2 ml of the synthetic

lower phase and then combined with the original lower phase. Combined lower phases were washed with 2 ml of the synthetic upper phase. After centrifugation, the lower phase was dried in a rotary evaporator and resuspended in 1.5 ml of chloroform/methanol (3:1). A volume of 0.5 ml was given into a plastic tube, and counted after addition of 10 ml of organic counting solution.

The results are expressed as means \pm SEM and the significance (P < 0.05) was evaluated by Student's *t*-test.

Drugs used in this study were carbachol (carbamyl-choline chloride), oleic acid-sodium salt, mepacrine (quinacrine dihydrochloride) (all Sigma Chemie, München, F.R.G.), EGTA and methylatropine nitrate (Merck, Darmstadt, F.R.G.) and [myo-3H]-inositol (DuPont NEN, Dreieich, F.R.G.).

RESULTS

Phospholipid composition of the heart

Choline-containing phospholipids represented more than 50% of the total identified phospholipids (20.9 μ mol/g wet weight). The fraction containing phosphatidylcholine and possibly plasmenyl–choline plus 1-O-alkyl-2-acyl-sn-glycerophosphocholine was the largest one (49.8%) (Table 1). Inositol phospholipids contribute less than 6% and phosphatidic acid only 0.3%.

Resting efflux of choline

Resting efflux of choline in the perfused chicken heart was constant throughout the experiment (Fig. 1). Since the resting release of acetylcholine, which is partially hydrolysed to choline, was relatively small, choline phospholipids were found to be the only source for the resting efflux of choline that is quantitatively essential [5].

Similar to previous findings [5], about 40% of the resting efflux of choline was inhibited by mepacrine, a phospholipase A₂ inhibitor (Fig. 1), and was dependent on extracellular Ca²⁺ (Fig. 2).

Mobilization of choline by carbachol

Carbachol (10 µM) accelerated the choline efflux,

Table 1. Phospholipid composition of the chicken heart

	Contents	
	μ mol/g wet weight	% of total phospholipid*
Total phospholipids	20.9	100
Lysophosphatidylcholine		
+ sphingomyelin	0.6	2.9
Phosphatidylinositol		
+ phosphatidylserine	1.4	6.7
Phosphatidylcholine†	10.4	49.8
Phosphatidylethanolamine	6.9	33.0
Diphosphatidylglycerol	1.5	7.2
Phosphatidic acid	0.06	0.29

Means of two experiments are shown. The phospholipid composition was nearly identical in the two analysed hearts and was very similar to the values found in cardiac tissue of other species [15]. For extraction and separation of phospholipids see Materials and Methods.

^{*} The sum of the identified phospholipids was set 100%.

[†] This fraction possibly contains also plasmenylcholine plus 1-O-alkyl-2-acyl-sn-glycerophosphocholine.

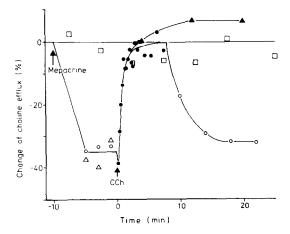


Fig. 1. Time-course and mepacrine-insensitivity of the muscarinic mobilization of choline in the perfused chicken heart. Open squares, perfusion with drug-free Tyrode solution. Mepacrine (30 μ M) was infused alone (open triangles and open circles) and, after 10 min, together with carbachol (CCh, 10 μ M), which was introduced for 8 min (closed circles) or 20 min (closed triangles). Ordinate, change of choline efflux in percent of efflux measured from -16 to -10 min (100% varied from 0.9 to 1.6 nmol g⁻¹ min⁻¹). Abscissa, time in min. Note the rapid response to CCh. Means of 4 experiments each.

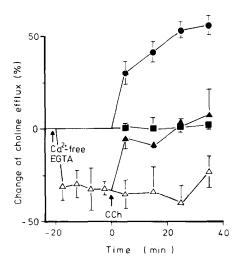


Fig. 2. The effects of methylatropine and of Ca^{2+} -free, EGTA-containing Tyrode solution on the muscarinic mobilization of choline (open triangles), perfusion with Ca^{2+} -free Tyrode solution containing EGTA (0.5 mM). Carbachol (CCh; $10~\mu M$) was infused at zero-time for 40 min in normal Tyrode solution (closed circles) or in Ca^{2+} -free, EGTA-containing solution (closed triangles). Methylatropine (0.3 μM) was infused from the beginning of the perfusion and, at zero-time, in combination with CCh (closed squares). Ordinate, change of choline efflux in percent of efflux before drug addition (100% varied from 1.1 to 2.2 nmol g^{-1} min $^{-1}$). Abscissa, time in min. Means \pm SEM of 3–5 experiments.

an effect that was blocked by $0.3 \,\mu\mathrm{M}$ methylatropine, but was not significantly altered (P < 0.05) in the presence of mepacrine (Fig. 1; see also [5]) or during infusion of a Ca²⁺-free Tyrode solution containing EGTA (0.5 mM; Figs. 2 and 3). Thus the target enzyme of the muscarinic mobilization of choline is unlikely to be a Ca²⁺-regulated and mepacrine-sensitive enzyme, such as phospholipase A_2 and the phosphatidyl inositol-specific phospholipase C (see below).

Figure 1 illustrates the time-course of the muscarinic mobilization of choline. After a latency of a few seconds, the efflux rapidly increased to reach a maximum within 2 min. The elevated efflux was maintained at a plateau in the presence of carbachol or, when the drug was washed out, declined to the control level with a half-time of 2 min.

The results shown in Figs. 1 and 2 support the hypothesis that phospholipase D might be the target enzyme of the muscarinic receptor activation (see Discussion and [5]). Recently, F^- has been reported to inhibit phospholipase D activity in hepatocytes [10]. NaF (5 mM), which was added 20 min before carbachol, blocked the muscarinic mobilization of choline. The choline efflux, which was increased by carbachol to $148 \pm 8\%$ (N = 4) in the absence of NaF, remained unaltered ($103 \pm 4\%$, N = 3) in its presence. In these experimental series, the hearts were perfused with Ca^{2+} -free Tyrode solution.

Accumulation of phosphatidic acid by carbachol and by oleic acid

If muscarinic receptor activation leads to stimulation of phospholipase D, one might expect an increase in phosphatidic acid in parallel to the

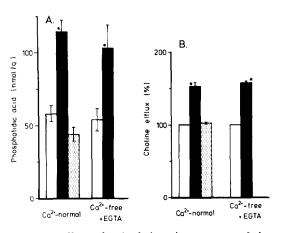


Fig. 3. The effects of carbachol on tissue content of phosphatidic acid and on choline efflux. Chicken hearts were perfused for 80 min. At the end of the perfusion, tissue content of phosphatidic acid (A) and choline efflux (B) were determined. Carbachol (10 μM; black columns) was infused from 40 to 80 min, methylatropine (0.3 μM; stippled columns) from the beginning of the experiment (Fig. 2) and Ca²⁺-free, EGTA-containing Tyrode solution from 20 to 80 min (2nd pair of columns in A and B). Columns indicate (A) tissue content of phosphatidic acid in nmol/g and (B) choline efflux in percent of control (open columns; 100% values varied from 0.6 to 1.8 nmol g⁻¹ min⁻¹). Means ± SEM of 3–9 experiments. * Significantly different from control.

observed accelerated efflux of choline. Indeed, carbachol ($10 \,\mu\text{M}$) markedly increased the tissue content of phosphatidic acid ($57 \pm 7 \,\text{nmol/g}$, N = 8) at normal Ca²⁺ and also, when a Ca²⁺-free solution containing EGTA ($0.5 \,\text{mM}$) was infused (Fig. 3). A comparative evaluation of the absolute increases is of limited value, because both phosphatidic acid as well as choline are rapidly metabolized. Nevertheless, the increase in tissue phosphatidic acid (about 50 nmol/g) was of the same order of magnitude as the total evoked efflux of choline during infusion of carbachol (about 25 nmol/g; see Fig. 2 "area under the curve").

Oleic acid, which is a well-known activator of phospholipase D (see Discussion), also enhanced the tissue content of phosphatidic acid and the increase in choline efflux at reduced Ca²⁺ (0.18 mM; Fig. 4).

Muscarinic mobilization of inositol phosphates

The experiments were carried out to test the possibility that the above-described increases in choline and in phosphatidic acid evoked by carbachol were caused primarily by the well-known "PI response", i.e. the hydrolysis of phosphatidylinositol 4,5-bisphosphate (PIP₂) into diacylglycerol (eventually phosphorylated to phosphatidic acid) and inositol trisphosphate (IP₃) (degraded to inositol phosphate) via activation of a specific, Ca²⁺-dependent phosphodiesterase (phospholipase C; see Discussion).

Hearts were perfused with [myo-³H]-inositol for 4 hr in a recirculation system and then washed out for 40 min. At the end of the experiment, the mean radioactivity of the total phospholipids was 11,500 cpm/g wet weight (mean of all experiments carried out with normal Tyrode solution). When Ca²⁺ was omitted during the last 40 min of the loading period and during the washout period, the incorporation of label was slightly, but significantly greater

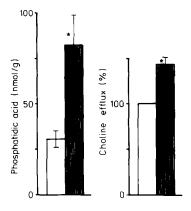


Fig. 4. The effects of oleic acid on tissue content of phosphatidic acid and on choline efflux. For details of similar experiments see Fig. 3. Sodium oleate (20 μ M; stippled columns) was infused from 40 to 80 min at low Ca²⁺ (0.18 mM). Columns indicate (A) tissue content of phosphatidic acid in nmol/g or (B) choline efflux in percent of control (open columns; 100% equals 1.2 nmol g⁻¹ min⁻¹). Means \pm SEM of 4 experiments each. * Significantly different from control.

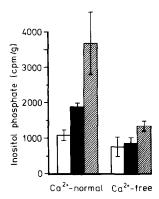


Fig. 5. The $\mathrm{Ca^{2^+}}$ -dependence of the muscarinic mobilization of inositol phosphate (IP₁). Chicken hearts were perfused for 4 hr with ($myo^{-3}\mathrm{H}$)-inositol and then for 40 min with normal (left columns) or $\mathrm{Ca^{2^+}}$ -free (right columns) Tyrode solution containing LiCl. In some experiments, carbachol (CCh) in concentrations of 10 $\mu\mathrm{M}$ (black columns) or 300 $\mu\mathrm{M}$ (hatched columns) was added after the loading period. Open columns, control. Aqueous extracts containing various inositol phosphates were applied to anion exchange columns. Fractions (1.0 ml) were collected and counted. Columns indicate radioactivity in cpm/g (area under the curve of ion exchange chromatogram). Means \pm SEM of 3–4 experiments each.

(14,519 cpm/g; P < 0.05) than with normal Tyrode solution.

Figure 5 shows that carbachol (10 and 300 μ M) enhanced the formation of inositol phosphate (IP₁) in the presence of Li⁺. These effects caused by either concentration were blocked in the Ca²⁺-free medium. Similar responses were observed for inositol bisphosphate (IP₂) and inositol trisphosphate (IP₃). Of the phosphoinositides labelled in the lipid phase (100%), $12.5 \pm 2.4\%$ (N = 3) were mobilized as inositol phosphates $(IP_1 + IP_2 + IP_3)$ in response to carbachol at the same concentration (10 μ M), that had been used for the above-described experiments on choline mobilization. In the presence of a Ca²⁺free medium, carbachol was ineffective $(-1.6 \pm$ 2.4%, N = 3). As shown above (Figs. 2 and 3), the muscarinic hydrolysis of choline phospholipids was not reduced by omission of Ca²⁺, even when EGTA was added. In conclusion, the "phosphoinositide cycle" (see Discussion) was not involved in the muscarinic hydrolysis of choline phospholipids.

DISCUSSION

About thirty years elapsed after the Hokins had detected the receptor-mediated turnover of phospholipids [18, 19], until its physiological role in the mechanism of Ca²⁺-mobilization evoked by certain neurotransmitters and hormones was acknowledged (for reviews see Refs. 20, 21). The original observation that muscarinic receptor activation enhanced the incorporation of ³²P_i into phosphatidylinositol and phosphatidic acid (for review see Ref. 20) plus the fact that inositol trisphosphate exhibited the characteristics of a second messenger [1, 2] may explain why the research on receptor-regulation of phospholipid hydrolysis was, and still

is, focused almost exclusively on the inositol phospholipid subspecies.

Apart from occasional speculations (e.g. Ref. 22), a systematic search for receptor-mediated hydrolysis of choline phospholipids began by studying the mobilization of choline from phospholipids [3–6] and by analyzing the source of labelled diacylglycerol [23, 24], phosphatidic acid [9, 10] and arachidonic acid [25].

The present study confirms the recent assumption [5] that muscarinic receptor activation enhances the hydrolysis of choline phospholipids presumably by stimulating phospholipase D, which cleaves the terminal diester bond of phosphatidylcholine and forms phosphatidic acid plus choline. The evidence is based on the following observations obtained in the isolated chicken heart.

- 1. The muscarinic mobilization of choline from phospholipids in the heart was not inhibited by mepacrine, which blocks phospholipase A₂. There is no evidence that mepacrine inhibits also phospholipase D. Own experiments excluded an inhibition of phospholipase D in the *in vitro* assay (unpublished).
- 2. Moreover, the muscarinic mobilization of choline was totally independent of extracellular Ca^{2+} , as perfusion with a Ca^{2+} -free, EGTA-containing solution failed to reduce the effect of carbachol. It is well-known that phospholipase D activity is not dependent on Ca^{2+} [26] in contrast to phospholipase A_2 [27] and phosphatidylcholine-specific phospholipase C [28]. It deserves mention that the β -adrenoceptor-mediated mobilization of choline was blocked at low Ca^{2+} and by mepacrine [6].
- 3. Muscarinic receptor activation increased both the tissue content of phosphatidic acid and the rate of choline efflux. The molecular extent of both effects was in the same range (nmol/g). Nevertheless, the question had to be answered conclusively whether the increase in phosphatidic acid was directly or indirectly linked to the well-known muscarinic hydrolysis of inositol phospholipids, which has also been frequently described in heart preparations [15, 29, 30]. This problem is important, because phosphatidic acid has long been recognized as a key metabolite of the receptor-activated "phosphoinositide cycle" or, recently-called, "PIP₂ cycle" [20]. The phosphodiesteratic cleavage of these phospholipids leads to the formation of diacylglycerol, which subsequently may be phosphorylated to phosphatidic acid.

We have measured the muscarinic formation of inositol phosphate in the perfused chicken heart, which is the standard preparation of this study. The response was blocked, when the heart was perfused with a Ca²⁺-free solution, a condition under which the extracellular Ca^{2+} -concentration was still 24 μ M [5]. A similar Ca²⁺-dependency was observed in cardiac tissue of other species [15]. Since the phosphoinositide-specific phospholipase C is known to be Ca2+-sensitive [20], it is suggested that the reduction or omission of extracellular Ca2+ for at least 20 min (Figs. 3 and 5) inhibited the formation of inositol phosphates by lowering the intracellular concentration of Ca²⁺ [29]. Under the same condition [5], and even when EGTA was added (this study), the muscarinic mobilization of choline and the accumulation of phosphatidic acid were unaltered. These results clearly indicate, that the "phosphoinositide cycle" was not involved in the observed effects on choline and phosphatidic acid.

4. The results with NaF and with oleic acid support the conclusion that the muscarinic hydrolysis of choline phospholipids was due to stimulation of phospholipase D. This enzyme was detected in synaptic membranes of the brain [31, 32] and in heart tissue [33]. Unfortunately, no selective activators or inhibitors are available yet. However, it has been reported that oleic acid activated [32] and F^- inhibited phospholipase D [10]. Indeed, $20 \,\mu\text{M}$ of oleate increased both choline efflux and tissue content of phosphatidic acid and 5 mM of NaF blocked the efflux of choline evoked by carbachol. Both experiments were carried out using low Ca^{2+} or Ca^{2+} -free solutions.

Recently a receptor-mediated accumulation of phosphatidic acid and choline in isolated rat hepatocytes has been described that was suggested to be also caused by a phospholipase D mechanism [10]. It was found that the rapid increase of phosphatidic acid levels evoked by 10 nM vasopressin occurred within 2 min and preceded that of diacylglycerol. These results, among others of this study [10], suggested that Ca²⁺-mobilizing hormones mainly increased phosphatidic acid levels by a mechanism that involves a guanine nucleotide binding protein coupled to phospholipase D.

Taken together, phospholipase D is the most likely target enzyme for muscarinic agonists in the receptor-mediated hydrolysis of choline phospholipids. However, the conclusion is based on the accumulation of various indirect evidence pointing in the same direction. More conclusive evidence is required. This seems especially necessary as we have not yet identified the precise source of choline, be it plasmenylcholine (plasmalogen), 1-O-alkyl-2-acylsn-glycerophosphocholine or a specialized pool of phosphatidylcholine. The various choline phospholipids seem to be hydrolyzed by more-or-less specific, and only partially characterized, subtypes of phospholipases [28].

The receptor-mediated hydrolysis of choline phospholipids may be a ubiquitous phenomenon present in many organs of the body. So far, it has been found in heart tissue (present study; [3–6]), in rat hepatocytes [10], in rat striatal slices [34], and in rat brain *in vivo* [35, 36].

The physiological role of muscarinic hydrolysis of choline phospholipids is, more or less, a matter of speculation. Alterations in the phospholipid composition may modulate general properties of the membrane (e.g. fluidity, surface charge, plasticity) or activities of membrane-bound proteins (e.g. receptors, G-proteins, enzymes, ion-channels). The immediate phosphatidylcholine metabolites formed by activation of phospholipase D are phosphatidic acid and choline.

Phosphatidic acid was shown to mobilize intracellular Ca²⁺ [37, 38] and has properties of a Ca²⁺ ionophore [39]. These effects may play a crucial role in smooth muscle contraction [40] or in positive inotropic responses of the heart [41]. Formation of phosphatidic acid in the sarcolemmal membrane via

phospholipase D activity markedly increased Na⁺-Ca²⁺-exchange rates [42, 43]. Some experimental evidence indicates that a phospholipase D mechanism may be involved in the "paradoxical" positive inotropic effect of carbachol [5, 44].

Moreover, an even more important consequence of the formation of phosphatidic acid may be that diacylglycerol, the endogenous activator of protein kinase C, is formed from phosphatidic acid due to the ubiquitous presence of phosphatidic acid phosphohydrolase [10]. Under the conditions of the phospholipase D assay, with the modification that the phosphohydrolase activity was not inhibited, the newly-formed phosphatidic acid occurred as diacylglycerol [45]. These considerations raise the intriguing possibility that muscarinic receptor stimulation activates protein kinase via two mechanisms: activation of polyphosphoinositide phosphodiesterase (phospholipase C) or of phosphatidylcholine phospholipase D.

Free choline, as the second product of phospholipase D activity, is present in all body fluids and serves as precursor for acetylcholine and for phospholipids [46]. When release and turnover of acetylcholine are increased, extracellular choline may become rate-limiting for the synthesis of acetylcholine in the brain (reviewed by Ref. 47). It has been suggested that, in the brain, the muscarinic mobilization of choline from phospholipids (possibly via a phospholipase D mechanism) may increase the availability of choline and may therefore represent a positive feedback regulation of acetylcholine synthesis [4, 36, 48].

Acknowledgement—We are grateful for the excellent technical assistance of Mrs. Ulrike Kreis.

REFERENCES

- Berridge MJ, Dawson RMC, Downes CP, Heslop JP and Irvine RF, Changes in the levels of inositol phosphates after agonist-dependent hydrolysis of membrane phosphoinositides. *Biochem J* 212: 473–482, 1983.
- Nishizuka Y, Turnover of inositol phospholipids and signal transduction. Science 225: 1365-1370, 1984.
- Corradetti R, Lindmar R and Löffelholz K, Physostigmine facilitates choline efflux from isolated heart and cortex in vivo. Eur J Pharmacol 85: 123-124, 1982.
- Corradetti R, Lindmar R and Löffelholz K, Mobilization of cellular choline by stimulation of muscarine receptors in isolated chicken heart and rat cortex in vivo. J Pharmacol Exp Ther 226: 826-832, 1983.
- Lindmar R, Löffelholz K and Sandmann J, Characterization of choline efflux from the perfused heart at rest and after muscarine receptor activation. *Naunyn Schmiedeberg's Arch Pharmacol* 332: 224-229, 1986.
- Lindmar R, Löffelholz K and Sandmann J, The release
 of choline from phospholipids mediated by β-adrenoceptors activation in isolated hearts. NaunynSchmiedeberg's Arch Pharmacol 334: 228-233, 1986.
- Guy GR and Murray AW, Tumor promoter stimulation of phosphatidylcholine turnover in HeLa Cells. Cancer Res 42: 1980–1985, 1982.
- 8. Liscovitch M, Blusztajn JK, Freese A and Wurtmann RJ, Stimulation of choline release from NG108–15 cells by 12-O-tetradecanoylphorbol 13-acetate. *Biochem J* **241**: 81–86, 1987.

- Löffelholz K, Brehm R, Lindmar R and Sandmann J, Effects of receptor activation on choline phospholipid metabolism. In: Cellular and Molecular Basis of Cholinergic Function (Eds. Dowdall M and Hawthorne JN), pp. 188–192. Ellis Horwood, Chichester, 1987.
- Bocckino SB, Blackmore PF, Wilson PB and Exton JH, Phosphatidate accumulation in hormone-treated hepatocytes via a phospholipase D mechanism. J Biol Chem 262: 15309–15315, 1987.
- 11. Israel M and Lesbats B, Application to mammalian tissues of the chemoluminescent method for detecting acetylcholine. *J Neurochem* **39**: 248–250, 1982.
- 12. Goldberg AM and McCaman RE, An enzymatic method for determination of picomole amounts of choline and acetylcholine. In: *Choline and Acetylcholine, Handbook of Chemical Assay Methods* (Ed. Hanin I), pp. 47-61. Raven Press, New York, 1974.
- Folch J, Lees M and Stanley GHS, A simple method for the isolation and purification of total lipids from animal tissues. J Biol Chem 226: 497-500, 1957.
- Kramer JKG, Fouchard RC and Franworth ER, A complete separation of lipids by three-directional thin layer chromatography. *Lipids* 18: 896–899, 1983.
- Brown SL and Brown JH, Muscarinic stimulation of phosphatidylinositol metabolism in atria. Mol Pharmacol 24: 351–356, 1983.
- Bartlett GR, Phosphorus assay in column chromatography. J Biol Chem 234: 466–468, 1959.
- Berridge MJ, Downes CP and Hanley MR, Lithium amplifies agonist-dependent phosphatidylinositol responses in brain and salivary glands. *Biochem J* 206: 587-595, 1982.
- 18. Hokin LE and Hokin MR, Effects of acetylcholine on the turnover of phosphoryl units in individual phospholipids of pancreas slices and brain cortex slices. *Biochim Biophys Acta* 18: 102–110, 1955.
- Hokin LE and Hokin MR, The presence of phosphatidic acid in animal tissues. J Biol Chem 233: 800– 804, 1958.
- Abdel-Latif AA, Calcium-mobilizing receptors, polyphosphoinositides and the generation of second messengers. *Pharmacol Rev* 38: 227–272, 1986.
- Berridge MJ, Inositol trisphosphate and diacylglycerol: two interacting second messengers. Annu Rev Biochem 56: 159–193, 1987.
- Ladinsky H, Consolo S and Peri G, Effect of oxotremorine and physostigmine on choline levels in mouse whole brain, spleen and cerebellum. *Biochem Pharmacol* 23: 1187–1193, 1974.
- Bocckino SB, Blackmore PF and Exton JH, Stimulation of 1,2-diacylglycerol accumulation in hepatocytes by vasopressin, epinephrine, and angiotensin II. *J Biol Chem* 260: 14201–14207, 1985.
- 24. Besterman JM, Duronio V and Cuatrecasas P, Rapid formation of diacylglycerol from phosphatidylcholine: a pathway for generation of a second messenger. *Proc Natl Acad Sci USA* 83: 6785–6789, 1986.
- Broekman MJ, Stimulated platelets release equivalent amounts of arachidonate from phosphatidylcholine, phosphatidylethanolamine, and inositides. *J Lipid Res* 27: 884–891, 1986.
- Taki T and Kanfer JN, Partial purification and properties of a rat brain phospholipase D. J Biol Chem 254: 9761–9765, 1979.
- Van den Bosch H, Intracellular phospholipases A. Biochim Biophys Acta 604: 191–246, 1980.
- 28. Wolf RA and Gross RW, Identification of neutral active phospholipase C which hydrolyzes choline glycerophospholipids and plasmalogen selective phospholipase A2 in canine myocardium. J Biol Chem 260: 7295-7303, 1985.
- Brown JH and Jones LG, Phosphoinositide metabolism in the heart. In: Phosphoinositides and Receptor Mech-

- anisms (Ed. Puiney JW), pp. 245-270. Alan R. Liss, New York, 1986.
- Woodcock EA, Schmauk-White LB, Smith AI and McLeod JK, Stimulation of phosphatidylinositol metabolism in the isolated, perfused rat heart. Circ Res 61: 625-631, 1987.
- 31. De Vries GH, Chalifour RJ and Kanfer JN, The presence of phospholipase D in rat central nervous system axolemma. *J Neurochem* 40: 1189-1191, 1983.
- Hattori H and Kanfer JN, Synaptosomal phospholipase D: potential role in providing choline for acetylcholine synthesis. Biochem Biophys Res Commun 124: 945– 949, 1984.
- 33. Chalifour RJ and Kanfer JN, Microsomal phospholipase D of rat brain and lung tissues. *Biochem Biophys Res Commun* 96: 742-747, 1980.
- Doležal V and Tuček S, Activation of muscarinic receptors stimulates the release of choline from brain slices. *Biochem Biophys Res Commun* 120: 1002–1007, 1984.
- Brehm R, Corradetti R, Krahn V, Löffelholz K and Pepeu G, Muscarinic mobilization of choline in rat cerebral cortex does not involve alterations of bloodbrain barrier. *Brain Res* 345: 306-314, 1985.
- Brehm R, Lindmar R and Löffelholz K, Muscarinic mobilization of choline in rat brain in vivo as shown by the cerebral arterio-venous difference of choline. J Neurochem 48: 1480-1485, 1987.
- Bruns C, Schächtele C and Marmé D, Synthetic diacylglycerols induce a rise of quin2-detectable free intracellular calcium in human platelets. FEBS Lett 221; 23– 27, 1987
- Brass LF and Laposata M, Diacylglycerol causes Ca release from the platelet dense tubular system: comparisons with Ca release caused by inositol 1,4,5triphosphate. Biochem Biophys Res Commun 142: 7-14, 1987.

- Putney JW, Weiss SJ, Van de Walle CM and Haddas RA, Is phosphatidic acid a calcium ionophore under neurohumoral control? *Nature (Lond)* 284: 345-347, 1980.
- Salmon DM and Honeyman TW, Proposed mechanism of cholinergic action in smooth muscle. *Nature (Lond)* 284: 344–345, 1980.
- Langer GA and Rich TL, Phospholipase D produces increased contractile force in rabbit ventricular muscle. Circ Res 56: 146-149, 1985.
- Philipson KD and Nishimoto AY, Stimulation of Na⁺-Ca²⁺ exchange in cardiac sarcolemmal vesicles by phospholipase D. J Biol Chem 259: 16-19, 1984.
- Vemuri R and Philipson KD, Phospholipid composition modulates the Na⁺-Ca²⁺ exchange activity of cardiac sarcolemma in reconstituted vesicles. *Biochim Biophys* Acta 937: 258-268, 1987.
- 44. Pappano AJ, Matsumoto K, Tajima T, Agnarsson U and Webb W, Pertussis toxin-insensitive mechanism for carbachol-induced depolarization and positive inotropic effect in heart muscle. TIPS 9 (Suppl.): 35–39, 1988.
- 45. Witter B and Kanfer JN, Hydrolysis of endogenous phospholipids by rat brain microsomes. *J Neurochem* 44: 155-162, 1985.
- 46. Ando M, Iwata M, Takahama K and Nagata Y, Effects of extracellular choline concentration and K⁺ depolarization on choline kinase and choline acetyltransferase activities in superior cervical sympathetic ganglia excised from rats. J Neurochem 48: 1448–1453, 1987.
- 47. Tuček S, Regulation of acetylcholine synthesis in the brain. J Neurochem 44: 11-24, 1985.
- Löffelholz K, Commentary on: Wurtman RJ, Nutrients affecting brain composition and behaviour. *Integr. Psy*chiatry 5: 242-244, 1987.